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Abstract 

A general theory has been developed describing the 
scattering intensity of a polydisperse dilute ensemble of 
particles. These particles are assumed to be mainly 
radially symmetric. Deviations from radial symmetry 
are treated quantitatively using an expansion of the 
electron density in terms of multipole components. The 
particle radii are assumed to have a Gaussian-like 
distribution. The electron density of the particle core is 
allowed to be different from that of the solvent. As a 
practical application of this theory a Fortran 77 
program was written which determines the radial 
electron density profile, the standard deviation of the 
radii, and additional parameters describing the 
deviations from spherical symmetry directly from the 
measured intensity. 

I. Introduction 

Theoretical expressions for the small-angle scattering of 
polydisperse membrane vesicles were given by Weick, 
Hosemann, Pape & Menke (1974) and Moody (1975). 

0567-7394/82/060835-06501.00 

Moody's theory is exact in the case of polydisperse 
ensembles with electron density of the particle core 
being equal to that of the solvent. The theory given by 
Weick et al. is an approximation of that given by 
Moody. Only Weick et al. give a concrete represen- 
tation of the model electron density and the statistical 
function describing radius variations. This concrete 
representation is, however, essential for a practical 
application of the theory to evaluate scattering 
diagrams. Both theories do not include deviations from 
spherical symmetry. 

In this paper a general theory is developed taking 
into account polydispersity and electron density 
difference between particle core and solvent, as well as 
non-radially-symmetric parts of the particle structure. 
The contributions of the non-radially-symmetric parts 
are quantitatively estimated, using an expansion of the 
electron density in terms of spherical harmonics, which 
was introduced by Stuhrmann (1970) to describe 
arbitrary one-particle scattering functions. In contrast 
to Stuhrmann's theory it is necessary for our theory, 
dealing with ensembles of particles, to consider effects 
of polydispersity on the multipole components. 
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836 THE EVALUATION OF SMALL-ANGLE SCATTERING DIAGRAMS 

Possible applications of our theory are more precise 
evaluations of scattering diagrams of lipoproteins, 
small membrane vesicles, and recombined lipoprotein 
particles. 

II. Basic definitions and assumptions 

b is the scattering vector in reciprocal space, b = 
2 sin(0)/2 (0 half scattering angle, ;t wavelength); x is 
the coordinate in real space; J denotes the Fourier 
transform 

3- I f (x ) ]  = f d3 xf(x) exp(-2m'bx); (1) 

the symbol z denotes the convolution square 
2 

f(x)  = f ( x ) ,  f - (x) ,  (2) 

where the convolution operation,  is defined by 

f ( x ) ,  g(x) = f d 3 yf(y)  g ( x -  y) (3) 

and f -  denotes f ( - x ) .  
In the following calculations several basic 

assumptions are made 
(a) The theoretical intensity I(b) differs from the 

actual measurable intensity Iexp(b) only by a constant 
factor, because the scattering factor of an electron f2  
and the polarization factor f02 are constant in the 
small-angle region (Guinier & Fournet, 1955). 

(b) The target is assumed to be an infinitely dilute 
solution of particles, i.e. we have to calculate the 
scattering intensity of each particle and take the 
incoherent average over all orientations and particle 
sizes. 

III. General approach for calculating one-particle 
scattering 

IV. Multipole term 

The monopole term, which we assume to be the most 
important part of the particle structure, is given by 

]' 
I(b) = 4/b 2 pr(r) r sin(2nbr) dr , (6) 

which is obtained from (5) by substituting jo(z) = 
sin(z)/z and pr(r) -- P00/(4z0 m. 

Equation (6) leads us to introduce an antisymmetric 
function g(r) defined from -oo to +oo: 

g(r) = { rpr(r) r > 0 
rpr(-r  ) r < 0. (7) 

Using g(r) we can write [F(b): scattering amplitudel 

b 2 I(b) = IJ-g(r)l 2 or bF(b) = ,Y-g(r). (8) 

If we apply the convolution theorem to the upper 
equation, we arrive at the following one-dimensional 
relationships between the functions pr(r) and I(b). 

I I  2 

I(b) < ~ b 2I(b) < bF(b) 

I j_  l I, 7 (9) 

p(r) < g(r) ~. , p~(r) 

For arbitrary functions a general solution of these 
equations is impossible, but it can be shown that a 
solution is possible introducing two conditions 
(Hosemann & Bagchi, 1962): 

(1) g(r) has to be a band-limited function 

f i fx < --R s 
g(r) = 0[ i fx  > Rs ; (10) 

(2) g(r) has to be a symmetric or antisymmetric 
function, and consequently transforms to a pure real or 
imaginary function with only two possible phases. 

A useful relationship connecting scattering intensity 
I(b) and electron density p(x) of a single arbitrary 
particle was given by Stuhrmann (1970). He uses an 
expansion ofp(x) in terms of spherical harmonics 

l 

p ( x )  = E E Plm(r) glm(O,q )) ( 4 )  
1=0 m=-I 

and obtains as a final result, after averaging over all 
orientations of p (x), 

'10; I I(b) = 4zr Y Y Plm(r)jt(2zrbr) r 2 dr (5) 
l=Om=-I 

where Jt denotes the spherical Bessel function of order 
l. For details see Stuhrmann & Miller (1978). 

The main advantage of relationship (5) between p(x) 
and I(b) is the fact that there are no interference terms 
between different multipole components. 

V. Phase problem, unique solution 

If one applies the sampling theorem (see Bracewell, 
1965) to (8), one obtains an important insight into the 
information contained in the scattering intensity I(b): 
I bF(b)l can be reconstructed from a limited number of 
equally spaced sampling points of bF(b) (Mclntosh & 
Worthington, 1974). 

( r ~ b -  ~)  )1 
1/L denotes the sampling distance, with L being equal 
to or larger than the maximum extension of g(r). 
Equation (11) holds for arbitrary phases s k only at the 
sampling points b = k /L .  Between these sampling 
points (11) is only valid for the true phase combination 
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and one with + and - interchanged. This means that 
the phase information is contained in the course ofF(b)  
between the sampling points. 

The solution g(r) is given by a Fourier series 

g(r) = ~ s k F exp(2zrirk/L) (12) 

whose coefficients sklbF(b)l with b = k / L  are exactly 
the sampling point of F(b). 

A deconvolution of p(r) is possible on the same 
conditions that were necessary for solving (8). The 
problem of deconvolution (Hosemann & Bagchi, 1962; 
Pape, 1974; Glatter, 1981) will not be treated further in 
this article. We intend only to give a more precise 
statement about the phase information contained in 
I(b). 

Since the extension of p(r) is twice that of g(r), the 
sampling distance for sampling I(b) has to be half that 
for sampling F(b). This means that the phase infor- 
mation is contained not in the total course of I F(b)l 
between two sampling points k /L ,  but only in odd- 
numbered sampling points (2k + 1)/(2L) of I(b). 

VI. Polydisperse ensemble of  radially symmetric 
particles 

The methods for solving (9) given in the preceding 
section are valid only for monodisperse systems. We 
will now develop a model for pr(r) similar to that 
described by Welte & Kreutz (1979) for the case of 
lamellar systems, which makes it possible to give an 
equation for the scattering intensity of a polydisperse 
ensemble of particles. Since the scattering intensity of a 
partial multipole component can be calculated indepen- 
dently from all others (equation 5), we will start with 
the most important part, the monopole component. 

When assuming infinitely dilute systems the scatter- 
ing intensity I(b) of an ensemble with distribution 
function h is given as an incoherent average of the 
individual scattering intensities Is(b,R s) of one particle 
with radius R~. 

+ o o  

I ( b ) =  f h (Rs ) I s (b ,Rs )dR  s. (13) 
--oO 

Since Fourier transformation and average can be 
interchanged, averaging intensities is equivalent to 
averaging autocorrelation functions ps(r) in real space. 

/ ( b ) =  J -p ( r )  = 3 - [ _ ~  ~° h(R s) Ps(r ,Rs)dRs] .  (14) 

In the following we will calculate the scattering 
intensity of polydisperse radially symmetric particles 
according to (14). 

To be able to describe particles of different sizes we 
compose a function ps(r) = gs(r)/r from three parts 
(Fig. 1): the radial electron density p~,(r) of a particle 
with mean radius R m, its mirror image Pm(r), and a 
rectangle function z(x,r) to correct resulting gaps or 
overlaps of Pm and pg inside the core of the particle, for 
the case of larger or smaller vesicles. 

Mathematically this model can be described by (15). 

gs(r) = r{pm(r + AR) + p r o ( r - A R )  + hiosz(12ARI,r)} 

(15) 

with the following abbreviations used: 

0 Irl > x /2  
z ( x , r )  = 

1 Irl < x / 2  

AR = R s -- R= 

+1 R s > R m 
0 s = 

- -  1 R s < R m 

h i = pm(r = 0). 

The resulting expression for I(b) after calculating ps(r), 
averaging, and Fourier transform) is given in (16). 

b2I(b) = 21Ka - ( A R )  Rol 2 + 2a21Rol 2 

-- 2 Re{Ka 2 n*(b)} 

+ 2 Re R o K a  - -  H*'  (b) 
2~ 

( 1 / 
+ ½ Re Ro E - -  H*"(b)  

4g 2 

- 4h I Re(Ka) ZPIS + 4h I i lm(Ro)  ZPIA 

+ h 2 ZQIS, (16) 

t Details of the calculations as well as numerical tests and a 
description of the program have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38020 (14 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 

-R s R s -R s 0 R s 

(a) (b) 
Fig. 1. (a) The two halves Pm and PT, were shifted apart from each 

other to obtain the desired radius R s > R m. The resulting gap is 
filled by adding a rectangule function. (b) For the case of 
R s < R m the two halves Pm and p~ are shifted towards each 
other. The resulting overlap is corrected by subtracting a 
rectangle function. 
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with the symbols 
Ro(b) = J'pm(r) 

Ka(b) = J-[rpm(r)] 

H*(b) = ~rh(-r)  

' denotes derivation 

a~ standard deviation of radii 

ZPIS ) 'rectangle terms' resulting from convolution 
ZPIA~ products of z(x,r) 
ZQIS)  

Re real part 

Im imaginary part. 

Moody's (1975) equation for I(b) is obtained from (16) 
by the approximation h i = 0. This means that the 
electron density inside the core of the particle has to be 
the same as that of the solvent. 

To be able to use (16) for the determination of 
electron density profiles it is necessary to introduce 
assumptions concerning the functions Pm and h: 

(a) p(r) = pro(r) + pro(r) can be described by a 
Fourier series. Since p(r) is a symmetric function a cos 
series is sufficient. The function pro(r) is the left part of 
this series: 

{ ~= c k cos(2zrk/Lr) 0 > r > - R  m 
Pro(r) = o (17) 

elsewhere. 

(b) The radius variations of the particles are 
described by a Gaussian statistical function with a 
mean diameter L = 2R m, actual diameter L s = 2Rs and 
standard deviation a (a = 2a~). 

1 [ (2Rs--2Rm) 2] 
h (Rs) -  exp - . (18) 

<AR > is zero for this choice of h. 
(c) According to the sampling theorem it is sufficient 

to calculate the Fourier transform (equation 14)only at 
discrete sampling points. Using the approximation that 
h = 0 for Ls - L > 30 we need sampling distances of at 
least 1/(2L + 6a), since 2L + 6a is the maximal 
extension of p(r). For simplicity we use sampling 
distances of 1/(NL), which are sufficient for a up to 
66%, using N = 4. 

With these assumptions it is possible to calculate the 
terms of (16) explicitly. They are given in the 
Supplementary Publication. 

(1) Scattering intensity for the case of small poly- 
dispersity 

In the case of monodisperse particles only the term 
proportional to IKal 2 (<AR> = 0) and Re(Ka2)H(b) 
contribute to (16), since all other terms vanish for 
a = 0. It can be expected that also in the case of 
polydispersity with small a these two functions domin- 

ate the scattering intensity. As shown by Fig. 2 the 
typical scattering intensity of radially symmetric 
particles originates from the combination of the two 
quite different functions IKal 2 and Re(Ka2). The latter 
is a function oscillating around zero, while the absolute 
square JKal 2 is a decreasing function, showing no 
oscillations. All other terms contribute only small 
corrections. The influence of the statistical function can 
easily be discussed, since IKal 2 is not influenced by 
polydispersity, while the oscillating term Re(Ka 2) is 
multiplied by a factor H(b) = exp( -2~2a2b  2) which 
means that its amplitude decreases more and more for 
increasing values of a or b. This corresponds to the 
experimentally observed facts that with increasing 
polydispersity the number of side maxima decreases, 
and that the minima of the scattering intensity no 
longer reach zero. 

It has to be emphasized that not only the amplitude 
and number of side maxima are affected by poly- 
dispersity, but also a shift in the position of the side 
maxima to smaller b values occurs. This shift results 
from the multiplication of the monotonely decreasing 
Gaussian (Fig. 4) with the oscillating term. As can be 
seen in Fig. 3 this shift is clearly visible for a relatively 
small a of 4%. Consequently, an interpretation of 
scattering intensities of polydisperse samples using 
monodisperse theory leads, apart from other effects, to 
artificially increased particle radii. 

(2) Scattering intensity for larger polydispersity 
In the case of larger o values three additional terms 

proportional to Re(Ro2)H '', a21Rol 2, and RoKaH' 
have to be considered, since all three terms contain a 
factor 02 and a 4. The statistical functions appearing in 
these terms are shown in Fig. 4. As can be seen in Fig. 

0.0 

q 
o 

Q 

~., d.2 d.3 d.4 
b 0/nm) 

! 

O.5 

Fig. 2. Total scattering function lb 2 (0) and its partial terms 
21Kal 2 (V1), -2 Re(Ka2)H (I), and the sum of the remaining 
terms (A) in the case of a sphere (c o = 1, all other c k = 0) and a 
standard deviation of radii of o R = 4%. 



b > 0. The only remaining term is 0"2lRol 2. This case is 
realized, for example, in the case of big membrane 
vesicles with extreme radius variations.  The p funct ion 
now consists only of  the convolut ion square of  the 
electron density profile of  a single membrane .  The 
scattering curve equals that  o f  a flat membrane  stack 
showing the same distance distribution. 

4 the functions Re (Ro  2) H "  and a21Rol 2 show a similar 
behaviour  to R e ( K a 2 ) H  and IKal 2. An addit ional  
oscillating term is RoKaH' .  The ' rectangle terms'  
produce  only small contr ibut ions in the case of  a 
statistical funct ion with ( d R )  -- 0. Impor tan t  contri- 
but ions of  these terms can be expected for asymmetr ic  
statistic functions with ( A R )  > 0, and high electron 
density differences between particle core and solvent. 

With  tr --, oo the situation becomes easy again. All 
terms containing H(b) or a derivat ion thereof  vanish for 

5. 6 

b (I/nrn) 

Fig. 3. Scattering intensities calculated for oR = 0% ( ), 4% 
( - - - ) ,  8% (...), and 16% (--.). Upper right: Pm + PTn used for 
this model calculation. 

~oq ~_o- 

0 

~o 
O- 

q 
tt)- 

q 
o- 

o 

0.( 

/ \ 

I i I I I 

0.1 0.2 0.3 0.4 0.5 

b (I/nm) 

Fig. 4. Total scattering function Ib 2 (0) and its partial terms 
21Kal 2 (E0, - 2  Re(Ka 2) H (11), 2tr21Rol 2 (+), 1/(4zt 2) x 
Re(Ro2)H '' (x), and 2 Re[RoKai/(2zt)H'] (~) in the case 
of a sphere (c o = 1, all other c k = 0) and a standard deviation of 
radii of o R = 20%. Upper right: Statistical functions H ( ), 
bo2H ( - - - ) ,  and (-02 + 4zr2bZtr2)H ( ' " )  for o R = 1 nm. All 
normalized to the same maximum amplitude. 

(3) Information content of I(b) 
Two principal pieces of information can be obtained 

from l(b):  firstly the radial  electron density profile, and 
secondly the amoun t  of  polydispersity.  

(a) Radial  electron density profile pr(r). It  was 
shown that  in the case of  monodisperse  solutions the 
complete informat ion  regarding pr(r) (apar t  from a 
factor  - 1 )  is present in I(b). With polydisperse 

q 

q 
IN -  

q 
p,.- 

q 

5 ° . 
v 

o 

0 

o ;~.oo o:os 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

b (I/nm) 
(a) 
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:1 

°~.oo o.~os o'.1o o'.ls 0'.20 o ~  o13o o:~ o~o 
b O/nm~ 

(b) 
Fig. 5. (a) Effect of polydispersity on the scattering intensity of a 

quadrupole (l = 2). o = 0% (0), o -- 10% (O), and o-- 20% 
(11). (b) Scattering intensities of three different multipoles all 
having the same polydispersity of o -- 20%. ! -- 2 (0), l = 3 (O), 
and l = 4 (1). 



840 THE EVALUATION OF SMALL-ANGLE SCATTERING DIAGRAMS 

ensembles this information is accessible only up to a 
certain amount of tr. To show this we first discuss 
O" --~ O0. 

In this extreme case only the information of tr21Rol 2 
remains, which is the convolution square of pro(r). Since 
in general pro(r) shows no centre of symmetry a 
deconvolution is not possible, and therefore pr(r) 
cannot be retrieved. 

To obtain a unique solution for pr(r) it must be 
required that H(b) does not decrease too fast, to allow 
contributions of the oscillating terms, which are 
obviously essential for phase determination, to be still 
present in l(b). This means that at least one or two side 
maxima should be measurerd with a reasonable 
signal-to-noise ratio. 

(b) Size distribution. Since the statistical function 
H(b) acts only on the oscillating terms, it is obvious 
that its tr can only be determined if the oscillating terms 
are visible, which is the same condition as in (a). 

VII. Polydisperse non-radially symmetric particles 

In the case of non-radially symmetric particles I(b) has 
to be computed as a sum of different multipole 
scattering intensities (equation 5). Because of poly- 
dispersity each of these multipole intensities has to be 
calculated, like the monopole intensity, as an incohe- 
rent average: 

+oo 

It,n = f hl,n(R)I~m(b,R)dR, (19) 
- - 0 0  

with the scattering intensity of a single multipole 
component being 

I? I I7,,, = 4re pt,,,(r)jl(2~.br) r 2 dr (20) 

As in the radially symmetric case model assumptions 
concerning the functions h~,,, and PI,,, have to be 
introduced. 

To give an idea of the form of these polydisperse 
multipole scattering intensities Fig. 5 shows several 

intensities for the simple case of Ptm = t~(r - R)  
and him(R) = exp[--(R -- Rm)2/(2o2)]. The average 
(equation 19) was computed numerically. It is obvious 
that a treatment of each multipole component, as exact 
as that in the radially symmetric case, leads to a 
drastically increased number of parameters to be 
determined. 

A useful application of this theory requires struc- 
tures either with one multipole component being 
dominant, and only a few others necessary for 
describing the particle structure, or with structures 
having radial dependencies pt,,,(r) that are easily 
described. 

In the Supplementary Publication a computer 
program is outlined, which is suitable for particles 
which are mainly radially symmetric. In addition, the 
results of numerical tests are given. 

The authors wish to thank Mrs W. Herbst for 
helping to prepare the English manuscript. All com- 
puter calculations were performed at the Rechen- 
zentrum of the University of Freiburg on Univac 
1100/82. 
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